If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x=132
We move all terms to the left:
2x^2+13x-(132)=0
a = 2; b = 13; c = -132;
Δ = b2-4ac
Δ = 132-4·2·(-132)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-35}{2*2}=\frac{-48}{4} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+35}{2*2}=\frac{22}{4} =5+1/2 $
| 11-1÷2m=1÷2 | | y-1/4=2y+5/6 | | x=-2x^2+8x-10 | | 2x^2-(x+5)^2=71 | | 3^x-1=246 | | 9-3y=1-4+2y | | 9x=7x+65 | | 3^x=246 | | 3x-1=246 | | 8^x/2^x-1=128 | | 5/2^x=11 | | 5/2*x=11 | | 7+14y=15+12y | | 6-7=2x | | y2+y-6=0 | | 5/2^x=11 | | 2x^2+13=132 | | -4x-1-Y=0 | | 3x-6=8x+7 | | -4(×2-x)=9 | | 2x+5=13;x=4 | | x²+2x=18+5x | | 2x-5=13;x=4 | | X2+2x=18+5X | | 2(1/2x+6)=x+5 | | 5/3x-15=0 | | 3(x-1)=1/2(6x-2) | | 16x+10=330= | | 3x^2-32x+320=0 | | 18=x/4+8 | | 13/14-6/7x=7/8 | | 2m+3=m^2 |